GOVERNMENT COLLEGE OF ENGINEERING & CERAMIC TECHNOLOGY AN AUTONOMOUS INSTITUTE

AFFILIATED TO MAKAUT (FORMELY KNOWN AS WBUT)

Theory / B. Tech. / IT / SEM - IV / Code - BS(IT) 408 / 2017-18

Paper Name: Discrete Mathematics

Full Marks: 75

Time Allotted: 3 hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Choose		ROUP – A [uestions][Compulsory] g questions. Answer all questions.	10 x 1 = 10
i) The	proposition $p \land (\sim p \lor q)$ is		
	a) a tautology	b) logically equivalent to p	V q
	c) logically equivalent to p∧ q	d) none of these	
ii) Neg	gation of $\forall x P(x)$ is		
	a) ∀x P(x)	b) \sim ($\exists x) P(x)$	
	c) $(\exists x) (\sim P(x))$	d) none of these	15
iii) Th	e remainder when -69 is divided by 8 is	6	- 41
	a) 1	b) 3	
	c) 5	d) 6	
iv) A F	POSET S is a lattice if every pair of electrons	ments of it has	1 = "
	a) g.l.b. and l.u.b. is S	b) l.u.b. in S	-
	c) g.l.b. in S	d) maximal and minimal eler	ments in S
v) The	solution of the recurrence relation $a_n =$	$= 2 a_{n-1}$ with initial condition $a_0 = 1$ is	
	a) $1 - 2^n$	b) 2 ⁿ	
10%	c) 2 ⁿ⁻¹	d) 2 ⁿ – 1	
vi) The	e clique number of a bipartite graph $K_{ m m}$		
VI.	a) 1	b) 2	
	c) 3	d) 4	
vii) A c	connected planar graph has 5 edges and		f the graph is
	a) 4	b) 2	
	c) 5	d) 3	
viii) If C	G is a tree with 50 vertices then the chr		
	a) 50	b) 100	
	c) 150	d) none of these	
ix) Num	ber of ways of a tree with 4 vertices ca	an be coloured with at most 3 colour	s is
	a) 12	<i>(</i> 6) 24	
	c) 36	(d) 48	
x) For a	perfect matching the corresponding gr	aph in a matching problem should b	e
	a) bipartite graph	b) a cycle having even numb	er of vertices
	c) a complete graph	d) none of these	

PAGE 1 OF 3

GROUP – B

[Short Answer Type Questions] Answer any four of the following

 $4 \times 5 = 20$

- 2. Verify the validity of the following argument: All integers are rational numbers. Some integers are powers of 2. Therefore some rational numbers are power of 2.
- 3. Determine the number of integer solutions of the equation $x_1 + x_2 + x_3 + x_4 = 32$, where $x_1, x_2, x_3>0$ and $0 < x_4 \le 25$.
- 4. Show that in a Lattice (L, \land , V), $a \land c \le b \land c$ and $a \lor c \le b \lor c$ if $a \le b$.
- 5. If the gcd(a,b)=1, then prove that gcd(a+b,a-b)=1 or 2.
- 6. State and prove Euler's theorem for a connected planar graph.
- 7. Prove that chromatic polynomial of cycle C_n ($n \ge 3$) with n vertices is $(x-1)^n + (-1)^n(x-1)$.

Group – C [Long Answer Type Questions] Answer any three of the following

 $3 \times 15 = 45$

- 8. a) Find the number of different non-equivalent statement formula containing n statement letters.
 - b) f is continuous if g is bounded or h is linear. g is bounded and h is integrable if and only if h is bounded or f is not continuous. If g is bounded then h is unbounded. If g is unbounded or h is not integrable, then h is linear and f is not continuous. --- Check the consistency of the following set of assumptions.
 - c) For a statement formula $\sim ((p \to q) \leftrightarrow \sim (p \land \sim q))$ find an equivalent statement formula in full CNF. [4+7+4]
- 9. a) Find the remainder when $1! + 2! + 3! + \dots + 100!$ is divided by 30.
 - b) Find the chromatic polynomial of a complete graph K_n with n vertices.
 - c) Show that $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ is a tautology
 - d) Find the minimum number of students in a class to be sure that 6 of them are born in the same month.

 [3+5+4+3]
- 10. a) A doctor gives a prescription of 20 tablets to a patient with the instruction to take at least one tablet per day for 15 days. Show that there is a period of consecutive days during which the patient takes a total of 9 tablets.
 - b) Use generating function to solve the recurrence relation $a_n 9a_{n-1} + 20a_{n-2} = 0$, $n \ge 2$, $a_0 = -3$ and $a_1 = -10$.
 - c) Show that the square of an odd integer is of the form (8k+1), where k is a non-negative integer.
 - d) Prove that every distributive lattice is modular.

[4+5+3+3]

- 11. a) If every region of a planar graph with n vertices and e edges embedded in a plane is bounded by k edges then show that $e = \frac{k(n-2)}{k-2}$.
 - b) Show that every simple connected planar graph G with less than 12 vertices must have a vertex of degree less than equal to 4.
 - c) Give an example of a graph which is self dual.

- 12. a) Prove that for any graph G with n vertices $\frac{n}{\beta(G)} \le \chi(G) \le n \beta(G) + 1$, where $\chi(G), \beta(G)$ denotes the chromatic number and independence number of G.
 - b) Show that there always exists a perfect matching for a k-regular bipartite graph.
 - c) Use decomposition rule to find the chromatic polynomial of the given graph and hence find the chromatic number of this graph. [5+5+5]

